Social Icons

Pages

Sabtu, 28 Juni 2014

ARUS BOLAK-BALIK

Rangkaian Arus Bolak - Balik

RANGKAIAN ARUS BOLAK-BALIK 

Telah diketahui bahwa generator arus bolak-balik sebagai sumber tenaga listrik yang mempunyai GGL :
E = Emax sin t
Persamaan di atas jelas-jelas menunjukkan bahwa GGL arus bolak-balik berubah secara sinusoidal. Suatu sifat yang menjadi ciri khas arus bolak-balik.



Dalam menyatakan harga tegangan AC ada beberapa besaran yang digunakan, yaitu :
1.    Tegangan sesaat : Yaitu tegangan pada suatu saat t yang dapat dihitung dari persamaan E = Emax sin 2 ft jika kita tahu Emax, f dan t.
2.    Amplitudo tegangan  Emax : Yaitu  harga  maksimum  tegangan. Dalam  persamaan : E = Emax sin 2 ft, amplitudo tegangan adalah Emax.
3.    Tegangan puncak-kepuncak (Peak-to-peak) yang dinyatakan dengan Epp ialah beda antara tegangan minimum dan tegangan maksimum. Jadi Epp = 2 Emax.
4.    Tegangan rata-rata (Average Value).
5.    Tegangan efektif atau tegangan rms (root-mean-square) yaitu harga tegangan yang dapat diamati langsung dalam skala alat ukurnya.
Gambar arus dan tegangan bolak-balik.
Gambar arti arus dan tegangan yang dikuadratkan.

Arus dan tegangan sinusoidal.
Dalam generator, kumparan persegi panjang yang diputar dalam medan magnetik akan membangkitkan Gaya Gerak Listrik (GGL) sebesar :
E = Em sin t
Dengan demikian bentuk arus dan tegangan bolak-balik seperti persamaan di atas yaitu :
i = Im sin t
v = vm sin t
im dan vm adalah arus maksimum dan tegangan maksimum.
Bentuk kurva yang dihasilkan persamaan ini dapat kita lihat di layar Osiloskop. Bentuk kurva ini disebut bentuk sinusoidal gambar.
Harga Efektif Arus Bolak-balik.



Dalam rangkaian arus bolak-balik, baik tegangan maupun kuat arusnya berubah-ubah secara periodik. Oleh sebab itu untuk penggunaan yang praktis diperlukan besaran listrik bolak-balik yang tetap, yaitu harga efektif.
Harga efektif arus bolak-balik ialah harga arus bolak-balik yang dapat menghasilkan panas yang sama dalam penghantar yang sama dan dalam waktu yang seperti arus searah.
Ternyata besar kuat arus dan tegangan efektifnya masing-masing :


Ieff = [ ] ½
Ief  =   = 0,707 Imax
Vef =    = 0,707 Vmax

Kuat arus dan tegangan yang terukur oleh alat ukur listrik menyatakan harga efektifnya.
Resistor dalam rangkaian arus bolak-balik.
Bila hambatan murni sebesar R berada dalam rangkaian arus bolak-balik, besar tegangan pada hambatan berubah-ubah secara sinusoidal, demikian juga kuat arusnya. Antara kuat arus dan tegangan tidak ada perbedaan fase, artinya pada saat tegangan maksimum, kuat arusnya mencapai harga maksimum pula.

Kumparan induktif dalam rangkaian arus bolak-balik.
Andaikan kuat arus yang melewati kumparan adalah I = Imax sin t. Karena hambatan kumparan diabaikan I.R = 0
Besar GGL induksi yang terjadi pada kumparan E1 = -L 
Bila tegangan antara AB adalah V, kuat arus akan mengalir bila :
V = L 
V = L 
V =  L  Imax. cos t
Jadi antara tegangan pada kumparan dengan kuat arusnya terdapat perbedaan fase  , dalam hal ini tegangan mendahului kuat arus.


Capasitor Dalam Rangkaian Arus Bolak-balik



Andaikan tegangan antara keping-keping capasitor oada suatu saat V = Vmax sin t, muatan capasitor saat itu :
Q = C.V
I =   = 
I =  C.Vmax cos  t
Jadi antara tegangan dan kuat arus terdapat perbedaan fase   dalam hal ini kuat arus lebih dahulu   daripada tegangan.
Reaktansi.

Disamping resistor, kumparan induktif dan capasitor merupakan hambatan bagi arus bolak-balik. Untuk membedakan hambatan kumparan induktif dan capasitor dari hambatan resistor, maka hambatan kumparan induktif disebut Reaktansi Induktif dan hambatan capasitor disebut Reaktansi Capasitif.






Impedansi (Z)

            Sebuah penghantar dalam rangkaian arus bolak-balik memiliki hambatan, reaktansi induktif, dan reaktansi capasitif. Untuk menyederhanakan permasalahan, kita tinjau rangkaian arus bolak-balik yang didalamnya tersusun resistor R, kumparan R, kumparan induktif L dan capasitor C.


Menurut hukum ohm, tegangan antara ujung-ujung rangkaian :
V = VR + VL + VC
Dengan penjumlahan vektor diperoleh :






Ada tiga kemungkinan yang bersangkutan dengan rangkaian RLC seri yaitu :

1.Bila XL>XC atau VL>VC, maka rangkaian bersifat induktif. tg  positif, demikian juga   positif. Ini berarti tegangan mendahului kuat arus.


2.Bila XL<XC atau VL<VC, maka rangkaian bersifat Kapasitif. tg  negatif, nilai   negatif. Ini berarti kuat arus mendahului tegangan.

3.Bila XL=XC atau VL=VC, maka rangkaian bersifat resonansi. tg  = 0 dan  = 0,ini berarti tegangan dan kuat arus fasenya sama.


Resonansi
            Jika tercapai keadaan yang demikian, nilai Z = R, amplitudo kuat arus mempunyai nilai terbesar, frekuensi arusnya disebut frekuensi resonansi seri. Besarnya frekuensi resonansi dapat dicari sebagai berikut :













f adalah frekuensi dalam cycles/det, L induktansi kumparan dalam Henry dan C kapasitas capasitor dalam Farad.

Getaran Listrik Dalam Rangkaian LC.

Getaran listrik adalah arus bolak-balik dengan frekuensi tinggi.
Getaran listrik dapat dibangkitkan dalam rangkaian LC.
Kapasitor C dimuati sampai tegangan maksimum. Bila saklar ditutup mengalir arus sesuai arah jarum jam, tegangan C turun sampai nol.
Bersamaan dengan aliran arus listrik timbul medan magnetik didalam kumparan L.
Medan magnetik lenyap seketika pada saat tegangan C sama dengan nol. Bersamaan dengan itu timbul GGL induksi, akibatnya tegangan C naik kembali secara berlawanan. Karenanya dalam rangkaian mengalir arus listrik yang arahnya berlawanan dengan arah putar jarum jam. Jadi dalam rangkaian LC timbul getaran listrik yang frekuensinya :


sumber: http://elektronika11c.blogspot.com/2013/05/rangkaian-arus-bolak-balik.html

INTI ATOM

Atom adalah suatu satuan dasar materi, yang terdiri atas inti atom serta awan elektron bermuatan negatif yang mengelilinginya. Inti atom terdiri atas proton yang bermuatan positif, dan neutron yang bermuatan netral (kecuali pada inti atom Hidrogen-1, yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Sekumpulan atom demikian pula dapat berikatan satu sama lainnya, dan membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan disebut sebagai ion. Atom dikelompokkan berdasarkan jumlah proton dan neutron yang terdapat pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.
Istilah atom berasal dari Bahasa Yunani (ἄτομος/átomos, α-τεμνω), yang berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf India dan Yunani. Pada abad ke-17 dan ke-18, para kimiawan meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para fisikawan berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa 'atom' tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip mekanika kuantum yang digunakan para fisikawan kemudian berhasil memodelkan atom.[1]
Dalam pengamatan sehari-hari, secara relatif atom dianggap sebuah objek yang sangat kecil yang memiliki massa yang secara proporsional kecil pula. Atom hanya dapat dipantau dengan menggunakan peralatan khusus seperti mikroskop gaya atom. Lebih dari 99,9% massa atom berpusat pada inti atom,[catatan 1] dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil, yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkan transmutasi, yang mengubah jumlah proton dan neutron pada inti.[2] Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan foton yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur, dan memengaruhi sifat-sifat magnetis atom tersebut.

sumber: http://id.wikipedia.org/wiki/Atom

MEDAN MAGNET

Arus Listrik Menimbulkan Medan Magnet
Medan magnet adalah ruang disekitar magnet dimana tempat benda-benda tertentu mengalami gaya magnet. Hans Christian Oersted (1777-1851 orang Denmark) merupakan orang pertama yang menemukan adanya medan magnet disekitar arus listrik. Gambar di samping tampak jarum kompas diletakkan di bawah kawat penghantar. Saat saklar terbuka, pada kawat tidak ada arus listrik yang mengalir dan jarum kompas pada posisi sejajar dengan kawat. Apabila saklar ditutup sehingga arus mengalir pada kawat penghantar, maka jarum kompas menyimpang. Simpangan jarum kompas tergantung arah arus pada kawat dan letaknya..
Dari percobaan yang pernah dilakukan, Oersted menyimpulkan bahwa "disekitar penghantar berarus listrik timbul medan magnet".
Bentuk Medan Magnet Disekitar Penghantar Berarus
A. Penghantar Lurus
Untuk mengamati bentuk medan magnet di sekitar penghantar lurus, lewatkan penghantar itu pada sehelai karton yang disekitarnya ditaburi serbuk besi. Apabila kertas diketuk, ternyata serbuk besi akan membentuk pola lingkaran sepusat dengan penghantar itu sebagai pusatnya. Hal ini menunjukkan bahwa medan magnet disekitar penghantar lurus berarus listrik berbentuk lingkaran sepusat dengan penghantar itu sebagai pusatnya.
Arah medan magnet di sekitar penghantar berarus listrik dapat dilihat pada gambar di samping.
Cara untuk menentukan arah medan magnet disekitar penghantar berarus digunakan :
1. Kaidah tangan kanan, dengan ketentuan :
- ) arah ibu jari menunjukkan arah arus listrik.
- ) arah lipatan jari yang lain menunjukkan arah medan magnet
2. Kaidah sekrup putar kanan, dengan ketentuan :
- ) arah putaran sekrup menunjukkan arah medan magnet.
- ) arah maju/mundurnya sekrup menunjukkan arah arus listrik
B. Penghantar Berbentuk Lingkaran
Apabila kawat dilengkungkan seperti gambar di samping pola medan magnetnya dapat dilihat pada gambar. Kaidah tangan juga berlaku pada kawat melengkung.

C. Kumparan (Solenoida)
Bila suatu kumparan diberi arus listrik, setiap bagian kumparan ini menimbulkan medan magnet disekitarnya. Medan magnet yang timbul merupakan gabungan medan magnet dari tiap bagian itu. Garis-garis medan magnet didalam selenoida (kumparan) saling sejajar satu dengan lainnya, yang dinamakan medan magnet homogen. Untuk menentukan arah medan magnet dalam selenoida digunakan aturan tangan kanan seperti pada penghantar melingkar
Gaya Magnetik (Gaya Lorentz)
Pada rangkaian di samping, apabila saklar ditutup maka arus listrik mengalir dari A ke B. Pada saat itu alumunium foil akan melengkung ke atas. Kemudian bila kutub sumber dibalik (arus mengalir dari B ke A), ternyata alumunium foil melengkung ke bawah. Yang menyebabkan alumunium foil melengkung ke atas atau ke bawah tidak lain adalah suatu gaya yang dikenal sebagai gaya magnetik (gaya Lorentz). Jadi arus listrik yang berada di dalam medan magnet mengalami gaya magnetik. Arah gaya magnetik ini tergantung pada arah arus dan arah medan magnet.

Untuk menentukan arah gaya magnetik (gaya Lorentz) digunakan aturan tangan kanan sebagai berikut:
- ) arah ibu jari menunjukkan arah arus listrik ( i )
- ) arah jari telunjuk menunjukkan arah medan magnet ( B )
- ) dorongan telapak tangan menunjukkan arah gaya Lorentz (F )
Besar gaya magnetik (gaya Lorentz) dipengaruhi:
a. besar kuat arus listruk ( i )
b. besar medan magnet ( B )
c. panjang kawat ( l )
d. sudut antara arah arus dan arah medan magnet
Perlu diketahui bahwa gaya magnetik merupakan reaksi dari gaya Biot Savart, yaitu gaya yang menggerakkan kutub magnet karena pengaruh arus listrik.
Penerapan Gaya Magnetik Pada Motor Listrik dan Meter Listrik
Motor listrik dan meter listrik bekerja dengan prinsip mengubah energi listrik menjadi energi mekanik dengan memanfaatkan timbulnya gaya magnetik. Gerak yang dimaksudkan disini adalah gerak rotasi. Dalam mekanika, gerak rotasi dipengaruhi oleh koppel, yaitu pasangan dua gaya sejajar tetapi berlawanan arah.
Motor Listrik
Motor listrik mengubah energi listrik menjadi energi mekanik. Motor listrik dapat dijumpai pada mobil-mobilan, VCD player, mixer dan masih banyak lagi pada peralatan rumah tangga. Bagian utama dari motor listrik adalah kumparan dan magnet. Pada dasarnya sumbu motor listrik dilengkapi dengan kumparan penghantar yang dialiri arus listrik. Jendela dari kumparan diterobos garis-garis medan listrik seperti gambar di samping.
Pada saat kumparan dialiri arus, QR mendapat gaya Lorentz ( F l ) keatas, sedangkan kumparan PS mendapat gaya Lorentz kebawah. Karena kedua gaya ini membentuk koppel, maka kumparan akan berotasi.
Perlu diketahui bahwa kedudukan antara arus listrik pada QR maupun PS terhadap medan magnet selalu tegak lurus. Sedangkan pada RS dan QP selalu membentuk gaya sama besar, berlawanan arah dan resultannya selalu segaris dengan sumbu putar, sehingga saling meniadakan.
Jika motor listrik memakai arus searah (DC), maka agar motor selalu menghasilkan arah putaran yang tetap, arah arus harus disesuaikan. Dalam hal ini saat kedudukan kumparan akan menghasilkan arah putaran berlawanan dengan semula, maka arus listriknya harus dibalik. Untuk keperluan ini, pada motor listrik dilengkapi dengan cincin belah (komutator). Untuk menghasilkan putaran yang lebih kuat, maka diperlukan jumlah lilitan kumparan yang lebih banyak dan medan magnet yang lebih kuat.

Meter Listrik (Galvanometer)
Meter listrik juga mengubah energi listrik menjadi energi mekanik. Meter listrik dapat dijumpai pada peralatan-peralatan ukur listrik seperti amperemetervoltmeter dan ohmmeter. Pada meter listrik, kumparan dipasang pada dua poros, yaitu poros atas dan bawah. Poros ini masing-masing dilengkapi dengan pegas spiral. Pegas berfungsi untuk mengendalikan putaran jarum penunjuk agar berputar sebanding dengan kuat arus yang mengalir pada kumparan. Pada saat kumparan tidak dialiri arus listrik, pegas mengatur letak jarum hingga menunjuk angka nol. Hal itu terjadi saat bidang kumparan sejajar dengan arah medan magnet. Jika arus listrik dialirkan, kopel gaya Lorentz pada kumparan memutar kumparan ke arah tegak lurus medan, tetapi putaran ini ditahan oleh pegas sehingga sudut putaran jarum sebanding dengan kuat arus.











sumber : http://smulab.tripod.com/medanmagnet.htm
 

Sample text

Sample Text

Sample Text

 
Blogger Templates